

www.elsevier.nl/locate/jorganchem

Journal of Organometallic Chemistry 593-594 (2000) 485-488

Communication

Ruthenium-assisted synthesis of *gem*-deuterated alkenes from monosubstituted propargyl alcohols and D_2O

Claudio Bianchini *, Isaac de los Rios, Carlos Lopez, Maurizio Peruzzini ¹, Antonio Romerosa

Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, ISSECC, CNR, Via J. Nardi 39, I-50132 Firenze, Italy

Received 8 April 1999; accepted 1 June 1999

Professor Fausto Calderazzo in recognition of his outstanding contributions to organometallic chemistry.

Abstract

The cyclohexenylvinylidene complex fac,cis-[(PNP)RuCl₂{ $C=CH(C=CHCH_2CH_2CH_2CH_2CH_2)$ }] (2) is synthesized by reaction of *mer,trans*-[(PNP)RuCl₂(PPh₃)] (1) with 1-ethynylcyclohexanol [PNP=CH₃CH₂CH₂CH₂N(CH₂CH₂PPh₂)₂]. Complex 2 reacts with water yielding *fac,cis*-[(PNP)RuCl₂(CO)] and methylenecyclohexane. The regioselective incorporation of deuterium from D₂O into the methylene group of methylenecyclohexane is consistent with the intermediacy of an η^1 -allyl ruthenium complex along the metal-assisted hydrolysis of the vinylidene C–C bond. The hydrolysis of the alkenylvinylidenes *fac,cis*-[(PNP)RuCl₂{C=CHCR=CH₂}] (R = Me, Ph) proceeds similarly but the regioselectivity of deuterium incorporation depends on the temperature due to $\eta^1 \Leftrightarrow \eta^3$ allyl interconversion. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Hydrolysis; Vinylidenes; Ruthenium; Allyl compounds; Reaction mechanisms

1. Introduction

It has been reported that the ruthenium(II) complex *mer,trans*-[(PNP)RuCl₂(PPh₃)] (1) assists the hydrolysis of terminal alkynes to give CO and the hydrocarbon resulting from the homologation of the alkyne substituent (eq. 1) [PNP=CH₃CH₂CH₂N(CH₂CH₂PPh₂)₂] [1]. A similar reaction has recently been found to involve disubstituted propargyl alcohols [2]. In this case, however, alkenes are formed (eq. 2).

$$= R + H_2O \xrightarrow{[M]} CO + RCH_3$$
(1)

$$= CR_2 OH \xrightarrow{[M]} CO + \sum_{R}^{R} (2)$$

 $[M] = [(PNP)RuCl_2]$

E-mail addresses: bianchin@fi.cnr.it (C. Bianchini), peruz@fi.cnr.it (M. Peruzzini)

¹ Also corresponding author.

Irrespective of the alkyne substituent, the cleavage of the C=C triple bond proceeds via Ru-cumulene complexes that react with H_2O to give hydroxycarbene intermediates. Simple 1-alkynes generate Ru-vinylidene complexes by formal 1,2-hydrogen shift (eq. 3) [1,3],

Scheme 1.

0022-328X/00/\$ - see front matter \bigcirc 2000 Elsevier Science S.A. All rights reserved. PII: S0022-328X(99)00324-1

^{*} Corresponding author.

while propargyl alcohols are dehydrated to Ru-allenylidene complexes (eq. 4) [2,4].

$$[M] = \cdot = \stackrel{R}{\longrightarrow} \stackrel{H_2O}{\longrightarrow} [M] \stackrel{OH}{\longrightarrow} \stackrel{\Delta}{\longrightarrow} [M] - co + RCH_3 (3)$$

In the case of propargyl alcohols bearing a hydrogen on the C_{δ} position, it is anticipated that rutheniumalkenylvinylidene intermediates are formed yielding CO and alkenes upon reaction with water (eq. 5) [2].

In this work, we show that the reaction sequence outlined in eq. 5 does occur with a mechanism involving the intermediacy, inter alia, of ruthenium- η^1 -allyl species. Moreover, it is shown that the use of D₂O in the hydrolysis reaction leads to the selective formation of *gem*-deuterated alkenes. The example detailed here involves 1-ethynyl-cyclohexanol and describes its selective conversion to methylenecyclohexane that is indeed a difficult alkene to prepare [5] with interesting applications in organic synthesis (Scheme 1) [6].

Reaction of 1-ethynylcyclohexanol with 1 in refluxing THF under nitrogen yields quantitatively the cyclohexenylvinylidene complex fac,cis-[(PNP)RuCl₂-{C=CH(C=CHCH₂CH₂CH₂CH₂)}] (2) (Scheme 1). Analogous metal-promoted transformations of propargyl alcohols are well-known and proceed via a stepwise mechanism in which key events are the formation of π -acetylene complexes (A), their tautomerization to hydroxyvinylidene intermediates (B) [7] and the dehydration of these latter to give alkenylvinylidene products (C) (Scheme 2) [2,4,8].

No intermediate species was detected by NMR spectroscopy during the transformation of 1 into 2 in the temperature range from 20 to 50°C. Likewise, no trace

Scheme 2.

of ruthenium allenylidene compound (**D**) was seen confirming that the deydration of γ -hydroxyvinylidene metal complexes can selectively involve δ -hydrogen atoms [2,8].

The cyclohexenylvinylidene complex 2 undergoes rapid hydrolysis in either THF or CHCl₃ already at room temperature yielding the carbonyl complex fac,cis-[(PNP)RuCl₂(CO)] (5) [1] and one equivalent of methylenecyclohexane, CH₂=CCH₂CH₂CH₂CH₂CH₂CH₂ (6) (Scheme 1). No trace of the isomeric alkene 1methyl-1-cyclohexene was formed even when the hydrolysis reaction was carried out at 50°C (in situ NMR experiments; GC analysis). Substitution of D₂O for H_2O gives exclusively methylenecyclohexane- d_3 in which two deuterium atoms are bound to the exocyclic methylene carbon atom and one deuterium atom is bound to the carbon atom in the 2 position of the cyclohexenyl group (Scheme 1). Identification of 6 and $6-d_3$ was made using NMR and GC-MS spectroscopy on pure samples obtained by column chromatography.

The regioselective incorporation of deuterium in methylenecyclohexane- d_3 together with previous mechanistic studies [1] allows us to rationalize the present hydrolytic C–C bond cleavage as well as the chemoselective formation of the exocyclic alkene instead of the thermodynamically stable 1-methyl-1-cyclohexene isomer. The proposed mechanism (Scheme 3) involves several steps, the majority of which have previously been proved for analogous systems: (i) deuteration of the vinylidene proton by D₂O to give **2**- d_1 [1]; (ii) addition of D₂O across the vinylidene C=C bond to generate a transient hydroxycarbene species [1,9]; (iii)

Scheme 3.

Scheme 4.

intramolecular elimination of DCl to form a coordinatively and electronically unsaturated acyl complex [1,10]; (iv) formal migration of the methylcyclohexenyl group (CO deinsertion) to give a (carbonyl)(η^1 -allyl) complex; (v) electrophilic attack by D⁺ at the γ -carbon atom of the η^1 -allyl ligand to give an alkene adduct [11]; (vi) alkene displacement by chloride ion.

In keeping with this mechanistic picture, the known alkenylvinylidene complexes fac, cis-[(PNP)RuCl₂{C= CHCR=CH₂}] (R = Me, 3; Ph, 4), [2] dissolved in CHCl₃, react with D₂O at 20°C yielding almost exclusively CD₂=C(R)CH₂D (>97%) (Scheme 4). At 50°C, the *gem*-deuterated alkene is still the major product but a 20% amount of the isotopomer CH₂=C(R)CD₃ is formed which is consistent with a low energy barrier to η^1 -CD₂-C(R)=CH₂ $\Leftrightarrow \eta^3$ -CD₂-C(R)-CH₂ $\Leftrightarrow \eta^1$ -CH₂-C(R)=CH₂

2. Experimental

2.1. Synthesis of 2

To a THF solution (20 ml) of 1 (0.92 g, 1.00 mmol) was added a 2-fold amount of 1-ethynylcyclohexanol (0.215 g, 2.00 mmol) and the resulting solution was refluxed for 150 min under N₂. After half the solvent was removed under vacuum, 30 ml of petroleum ether (b.p. $40 - 70^{\circ}$ C) was added. The orange precipitate of fac,cis-[(PNP)RuCl₂{C=CH(C=CHCH₂CH₂CH₂CH₂)}] (2) was filtered off, washed with light petroleum ether and dried under a stream of nitrogen. Yield 82%. Selected spectroscopic data: IR (Nujol mull, KBr plates), (v_{C-C}) 1632 (w) and 1611 cm⁻¹ (m). ¹H-NMR (200.13 MHz, CD₂Cl₂, TMS reference, 294 K), 5.39 (t, ${}^{3}J_{\text{HH}}$ 5.4 Hz, 1H, C=CH_{cyclohexenyl}); 5.03 (t, ${}^{4}J_{\text{HP}}$ 3.3 Hz, 1H, Ru=C=CH). ${}^{31}P{}^{1}H$ -NMR (81.01 MHz, CD₂Cl₂, H₃PO₄ 85% reference, 294 K), 47.8 (s). ¹³C{¹H}-NMR (50.32 MHz, CD₂Cl₂, TMS reference, 294 K), 358.9 (t, $^{2}J_{CP}$ 17.3 Hz, Ru=C=CH); 118.2 (s, confirmed by a DEPT-135 experiment, C=CH_{cvclohexenvl}); 116.6 (s, confirmed by a DEPT-135 experiment, Ru=C=CH); 29.8,

26.5, 23.8, 23.3 (all s, confirmed by a DEPT-135 experiment, *CH*_{2cyclohexenyl}); *C*=CH_{cyclohexenyl} not observed.

2.2. Reaction of 2 with H_2O

In a typical experiment, a 10-fold excess of water (48 µl, 2.66 mmol) was syringed under nitrogen into a well stirred solution of 2 (0.200 g, 0.26 mmol) in THF (10 ml). The solution was stirred overnight at room temperature. The volatiles were removed in vacuo at room temperature to leave a brown residue. A portion of the residue was analyzed by ³¹P{¹H}-NMR spectroscopy which confirmed the formation of 5 as the only ruthenium-phosphine complex. To the rest of the residue was added diethyl ether $(3 \times 3 \text{ ml})$ which was dried over sodium sulfate and evaporated to dryness at atmospheric pressure. The residue was dissolved in CDCl₃ and characterised by ¹H-, ¹³C{¹H}-NMR and GC-MS spectroscopy (see Section 2.3). The yield of 6 calculated by integration of the ¹H-NMR resonances with respect to ferrocene as internal standard was higher than 90%. Column chromatography on silica-gel of the diethyl ether solution (diethyl ether as eluant), afforded pure 6. Replacing H_2O with D_2O in the above experiment gave **6-** d_3 in yield exceeding 90% after similar work-up (¹Hand ²H-NMR and GC-MS analysis, see Section 2.3).

2.3. Chemico-physical properties of 6 and $6-d_3$

Spectral data for **6**: ¹H-NMR (299.45 MHz, CDCl₃, TMS reference, 293 K), 4.57 (qu, ⁴ J_{HH} 0.9 Hz, 2H, C= CH_2); 2.12 (m, 4H, CH_{2(β)}), 1.27 (m, 6H, CH_{2(γ)}=CH_{2(δ)}). ¹³C{¹H}-NMR (50.32 MHz, CDCl₃, TMS reference, 293 K), 150.7 (s, C_α); 107.0 (s, confirmed by a DEPT-135 experiment, C= CH_2); 35.5 (s, confirmed by a DEPT-135 experiment, C_β); 28.2, 26.6 (all s, confirmed by a DEPT-135 experiment, C_γ and C_δ). [M⁺ = 96(40), M – CH₃⁺ = 81(100)]. Spectral data for **6**- d_3 : ²H-NMR (76.77 MHz, CHCl₃, TMS reference, 293 K), 4.6 (br s, 2D, C= CD_2); 2.2 (m, transforms in a singlet in the ²H{¹H}-NMR spectrum, 1D, CHD_{(β}).

2.4. Reaction of 3 (or 4) with H_2O

The hydrolysis reactions of **3** and **4** were followed in a 5-mm NMR tube by adding two equivalents of H₂O to a CDCl₃ or THF- d_8 solution of the alkenylvinylidene complex at either 20 or 50°C. Irrespective of the temperature, ¹H-, ³¹P{¹H}-NMR and GC-MS spectra confirmed the formation of **5** and the generation of one equivalent of alkene [CH₂=C(Me)R (R = Me, Ph)]. Spectral data for methylpropene, CH₂=CMe₂: ¹H-NMR (200.13 MHz, CDCl₃, TMS reference, 293 K), 4.75 (sept, ⁴J_{HH} 1.2 Hz, 2H, C=CH₂); 1.83 (t, 6H, CH₃) $[M^+ = 56(42), M - CH_3^+ = 41(100), M - CH_2CH_3^+ =$ 27(22)]. Spectral data for α -methylstyrene, CH₂=CMePh: ¹H-NMR (200.13 MHz, CDCl₃, TMS reference, 293 K), 7.5–7.2 (m, 5H, Ph), 5.48 (dq, ${}^{2}J_{HH}$ 1.6 Hz, ${}^{4}J_{HH}$ 0.8 Hz, 1H, alkene proton *trans* to Ph); 5.17 (qu, ${}^{2}J_{HH}$ ca. ${}^{4}J_{HH}$ ca. 1.6 Hz, 1H, alkene proton *cis* to Ph), 2.18 (dd, 3H, Me). $[M^+ = 118(100), M - 100)$ $CH_3^+ = 103(46)$]. When H₂O was substituted for D₂O, the gem-deuterated alkenes $CD_2=C(R)CH_2D$ were the largely major products (>97%) at 20°C. At 50°C, the isotopomers CH₂=C(R)CD₃ were formed in ca. 20% yield [(19%, R = Ph; 23%, R = Me) as determined by ¹H-NMR integration of the CH₂ resonance of $CH_2=C(R)CD_3$ with respect to ferrocene as internal standard].

Acknowledgements

This work was supported by the bilateral program 'Azione Integrata' between the University of Florence (Italy) and Almeria (Spain), by the international cooperation agreement CNR (Italy)/RAS (Russia) and by the EC contract INTAS 96-1176.

References

- C. Bianchini, J.A. Casares, M. Peruzzini, A. Romerosa, F. Zanobini, J. Am. Chem. Soc. 118 (1996) 4585.
- [2] C. Bianchini, M. Peruzzini, F. Zanobini, I. de los Rios, C. Lopez, A. Romerosa, Chem. Commun. (1999) 443.
- [3] (a) C. Bianchini, P. Innocenti, M. Peruzzini, A. Romerosa, F. Zanobini, Organometallics 15 (1996) 272. (b) M.I. Bruce, Chem. Rev. 91 (1991) 197.
- [4] M.I. Bruce, Chem. Rev. 98 (1998) 2797.
- [5] Beilstein Handbuch der Organischen Chemie, Springer Verlag, Berlin, Germany. Beilstein Registry Number: 773760.
- [6] (a) D. Arnold, J. Am. Chem. Soc. 70 (1948) 2590. (b) B. Hazdra,
 J. Am. Chem. Soc. 81 (1959) 228. (c) M.J. Burk, R.H. Crabtree,
 D.V. McGraith, Anal. Chem. 58 (1986) 977.
- [7] E. Bustelo, M. Jímenez-Tenorio, M.C. Puerta, P. Valerga, Organometallics 18 (1999) 950.
- [8] V. Cadierno, M.P. Gamasa, J. Gimeno, J. Borge, S. García-Granda, Organometallics 16 (1997) 3178.
- [9] C. Bianchini, A. Marchi, L. Marvelli, M. Peruzzini, A. Romerosa, R. Rossi, Organometallics 15 (1996) 3804.
- [10] J. O'Connor, K. Hiibner, Chem. Commun. (1995) 1209.
- [11] (a) J.P. Collman, L.S. Hegedus, J.R. Norton, R.G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1987 (Chapter 8). M. Rosenblum, J. Watkins, J. Am. Chem. Soc. 112 (1990) 6316.
- [12] K. Vrieze, in: L.M. Jackman, F.A. Cotton (Eds.), Dynamic Nuclear Magnetic Resonance Spectroscopy, Academic Press, New York, 1975, p. 441.